I am a postdoctoral researcher at the University of Bath, where I am working with Euan Spence. I am part of the EPSRC-funded project At the interface between semiclassical analysis and numerical analysis of wave propagation problems.

My research focuses on wave propagation problems, Decomposition Domain Methods (DDM) and Boundary Integral Equations (BIE). I am also developing a library for hierarchical matrix techniques called Htool with a parallelized matrix-vector product using MPI. It can be used via FreeFEM for solving BIEs, via PETSc for black-box compression, and directly via C++ or its Python interface.

Previously, I did my Ph.D under the supervision of Xavier Claeys and Frédéric Nataf at Laboratoire Jacques-Louis Lions ( LJLL) in Sorbonne Université, and I was a member of the joint Inria-LJLL project team Alpines. My thesis was funded by the ANR (French National Research Agency) via the ANR project NonlocalDD.

- Wave propagation problems
- Domain Decomposition Methods
- Boundary Integral Equations
- Numerical analysis
- Scientific Computing
- Computer tools

PhD in applied mathematics, 2020

Sorbonne Université

Master's degree in applied mathematics, 2016

Sorbonne Université

Engineer's degree, 2016

École Nationale des Ponts et Chaussées

High-frequency estimates on boundary integral operators for the Helmholtz exterior Neumann problem.
arXiv, 2109.06017.

(2021).
Applying GMRES to the Helmholtz equation with strong trapping: how does the number of iterations depend on the frequency?.
arXiv, 2102.05367.

(2021).
Eigenvalues of the truncated Helmholtz solution operator under strong trapping.
SIAM J. Math. Anal., accepted.

(2021).
Two-level preconditioning for h-version boundary element approximation of hypersingular operator with GenEO.
*Numerische Mathematik*, Sep 2020, Vol. 146, Issue 3, Pages 597-628.

(2020).
Boundary integral multi-trace formulations and Optimised Schwarz Methods.
*Computers & Mathematics with Applications*, June 2020, Vol. 79, Issue 11, Pages 3241-3256.

(2020).
Une nouvelle approche pour étudier la convergence de la méthode de GMRes appliquée à la résolution de l’équation de Helmholtz par formulation intégrale avec des cavités elliptique.

computer tools for mathematicians and computer scientists

Library for parallel hierarchical matrices

Research project conducted during the summer school CEMRACS in 2016

*M1 : Calcul scientifique pour les grands systèmes linéaires [4M053]*

36 hours – lecturers: Xavier Claeys and Cindy Guichard*M1 : Mise en oeuvre de la méthode des éléments finis [4M054]*

36 hours – lecturers: Xavier Claeys and Cindy Guichard

*M1 : Calcul scientifique pour les grands systèmes linéaires [4M053]*

36 hours – lecturer: Xavier Claeys*M1 : Mise en oeuvre de la méthode des éléments finis [4M054]*

36 hours – lecturer: Xavier Claeys